Inhibition of regulated proteolysis by RseB.

نویسندگان

  • Brent O Cezairliyan
  • Robert T Sauer
چکیده

The Escherichia coli envelope-stress response is a sensor system that increases transcription of stress genes in the cytoplasm when misfolded porins are detected in the periplasm. This response is initiated by DegS cleavage of the periplasmic domain of RseA, a transmembrane protein. Additional proteolysis of transmembrane and cytoplasmic portions of RseA then frees the sigma(E) transcription factor, which directs the transcriptional response. We show that RseB protein, a known negative regulator, inhibits proteolysis by DegS in vitro by binding tightly to the periplasmic domain of RseA. Inhibition of DegS cleavage requires RseB binding to a conserved region near the C terminus of the poorly structured RseA domain, but the RseA sequences that mediate DegS recognition and RseB binding do not overlap directly. Although DegS cleavage of RseA is normally activated by binding of the C termini of porins to the PDZ domain of DegS, RseB inhibition is independent of this activation mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution structures of RseA and its complex with RseB

The bacterial envelope stress response, which is responsible for sensing stress signals in the envelope and for turning on the sigma(E)-dependent transcription, is modulated by the binding of RseB to RseA. In this study, the solution structures of RseA and its complex with RseB were analyzed using circular dichroism and small-angle X-ray scattering. The periplasmic domain of RseA is unstructure...

متن کامل

Crystal structure of RseB and a model of its binding mode to RseA.

The bacterial envelope stress response senses stress signals in the extracytoplasmic compartment, and activates sigma(E)-dependent transcription by degrading its antisigma factor RseA. RseB, a binding partner of RseA, plays a pivotal role in regulating this response, but its molecular mechanism is not understood. We therefore determined the crystal structure of Escherichia coli RseB at a resolu...

متن کامل

Integrating feature modeling with the RSEB

We have integrated the feature modeling of FeatureOriented Domain Analysis (FODA) into the processes and workproducts of the Reuse-Driven Software Engineering Business (RSEB). The RSEB is a use-case driven systematic reuse process: architecture and reusable subsystems are first described by use cases and then transformed into object models that are traceable to these use cases. Variability in t...

متن کامل

Crocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection

Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...

متن کامل

Signal integration by DegS and RseB governs the σ E-mediated envelope stress response in Escherichia coli.

In Escherichia coli, the σ(E) transcription factor monitors and maintains outer membrane (OM) integrity by activating genes required for assembly of its two key components, outer membrane proteins (OMPs) and lipopolysaccharide (LPS) and by transcribing small RNAs to down-regulate excess unassembled OMPs. σ(E) activity is governed by the rate of degradation of its membrane-spanning anti-σ factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 10  شماره 

صفحات  -

تاریخ انتشار 2007